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Abstract. We revisit the problem of daily correlations in speculative prices and report empirical evidences
on the existence of what we term a conditional or dual dynamics driving the evolution of financial assets.
This dynamics is detected in several markets around the world and for different historical periods. In
particular, we have analyzed the DJIA database from 1900 to 2002 as well as 65 companies trading in the
LIFFE market of futures and 12 of the major European and American treasury bonds. In all cases, we
find a twofold dynamics driving the financial evolution depending on whether the previous price went up
or down. We conjecture that this effect is universal and intrinsic to all markets.

PACS. 89.65.Gh Economics; econophysics, financial markets, business and management – 05.45.Tp Time
series analysis – 87.23.Ge Dynamics of social systems

1 Introduction

One fundamental assumption lying behind many modern
theories of mathematical finance is the so called “efficient
market hypothesis” which basically states that the market
incorporates instantaneously any information concerning
future market evolution [1]. In consequence, if a market
is efficient with respect to some information set it is im-
possible to make economic profits by trading on the basis
of that information set [2]. This in particular indicates
that market efficiency necessarily implies the absence of
(auto)correlations in financial prices at any time scale,
for correlation means some degree of predictability which
in turn would open the door to profitable strategies ex-
clusively based on the information contained in the price
itself. Note incidentally that the lack of correlations im-
plied by the efficient market hypothesis means that the
price process must be driven by white noise. However,
this assumption is very restrictive since real markets are
not efficient, at least at short times, and the existence of
correlations seems to be well documented [2–6].

Therefore, the search for correlations in financial time
series has been the subject of intense research during the
last years [2–12]. Partly due to the hope that this knowl-
edge would be useful for predicting the behavior of the
market and, in a more academic sense, because correla-
tions could bring some light to the understanding of the
real market dynamics.

Among such correlations we want to single out the
following one: it has been observed that the logarithmic
variations of price –the so called returns– are correlated
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with themselves in such a way that highly positive returns
are followed by highly positive returns as well. In the eco-
nomics literature this effect applied to daily returns has
been known for long. Thus Fama in 1970 observed slightly
positive autocorrelations in daily security returns with a
lag of one day and no evidence for higher lags [1]. The
study of this particular and relevant correlation was pur-
sued over the years by a number of authors who basically
tried to find an explanation of it which essentially relies
on non synchronous trading (see, for instance, Atchison
et al. [11]). In the last decade the problem was again taken
up by LeBaron who thoroughly studied daily and weakly
serial correlations and confirmed Fama’s findings of small
but significant autocorrelation in returns for one day and
no significance for higher lags [12] (see also [13] for a thor-
ough review). This effect was applied by the author him-
self as a possible forecasting tool, unfortunately with tiny
improvements [14].

In the econophysics literature the effect has also been
considered and recently reported but only for high fre-
quency data [15,16]. Nevertheless, this correlation is found
to be of short range since it decays exponentially with a
characteristic time of the order of minutes [8,9,15,16].

In this paper we want to revisit the daily correlation
in returns and look at the problem from a different per-
spective, more from the viewpoint of econophysics and its
methodology than that of mathematical finance. The pa-
per is organized as follows. In Section 2 we analyze the
signs of the returns. In Section 3 we present a simple two-
state model which accounts for the main features of the
effect. In Section 4 we address the problem of the uni-
versality of the conditional dynamics by showing that it
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Table 1. Summary of the empiric statistics for the DJIA index compared to the predictions of the uncorrelated model and the
two-state model. The empty values in rows 3 and 4 must be taken from the empiric measurements given in row 2 as the inputs
for the theoretical predictions of each model. Numbers within parentheses are affected by statistical errors (see main text).

p+ p++ p−− 〈τ+〉 〈τ−〉 〈R+〉 〈R−〉 〈R〉
Empiric DJIA index 0.52(2) 0.54(7) 0.49(5) 2.2(2) 2.0(2) 8.(2) × 10−4 −5.(3) × 10−4 1.(7) × 10−4

Uncorrelated model – 0.52(2) 0.47(8) 2.0(9) 1.9(1) 1.(7) × 10−4 1.(7) × 10−4 –

Two-state model 0.52(7) – – 2.2(1) 1.9(8) – – 1.(8) × 10−4

appears in a wide range of corporate stocks and treasury
bonds besides market indices. Conclusions are drawn in
Section 5.

2 Signs of the return

Let us address the problem by first considering the time
series of the sign of daily returns, Rn, defined as

Rn = ln [Sn/Sn−1], (1)

where Sn and Sn−1 are the closing market prices corre-
sponding to days n and n− 1 respectively. We thus assign
the value +1 if a given day has a positive return and −1
otherwise. Which are the statistical properties of this sig-
nal? The simplest hypothesis would be to consider positive
and negative days as uncorrelated random events with a
probability p+ for positive days and 1 − p+ for negative
ones. Using this assumption as a test or “null hypothe-
sis”, the probability of having a sequence of n consecutive
positive returns, ψ+(n), is therefore

ψ+(n) = pn−1
+ (1 − p+), (2)

that is, the geometric distribution. The average number
of consecutive positive days is simply given by 〈τ+〉 =
(1− p+)−1 and the same holds for sequences of days with
negative returns replacing p+ by 1 − p+, i.e., 〈τ−〉 = p−1

+ .
In order to accept or reject the null hypothesis, we use

data from the Dow Jones Industrial Average index (DJIA)
containing daily records from 1900 to 2002 (28126 days)
which covers a wide temporal range with many different
economic and political situations thus ensuring statistical
significance. Direct measurements on this database yield
for the frequency of positive days the value p+ = 0.522±
0.002 and, according to the model given by equation (2),
the expected number of consecutive positive and negative
days is 〈τ+〉theoretical = 2.09 ± 0.01 and 〈τ−〉theoretical =
1.91 ± 0.01 respectively (these results are summarized in
Tab. 1).

Figure 1 shows the probability distributions of the
lengths of sequences of positive and negative days, ψ+(n)
and ψ−(n) . As is clearly seen, these distributions seem to
follow a geometric law, in agreement with equation (2).
However, the empirical average lengths of positive and
negative days obtained from direct measurements are
〈τ+〉empiric = 2.22 ± 0.02 and 〈τ−〉empiric = 2.02 ± 0.02
which are higher than the theoretical values predicted
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Fig. 1. Probability of having a sequence of n consecutive pos-
itive or negative days. The solid lines are the geometric dis-
tributions discussed in the text with average values given by
〈τ+〉empiric = 2.22 and 〈τ−〉empiric = 2.02.

above. The disagreement between empiric and theoretical
results is certainly small and might go easily unnoticed,
although a careful analysis of these values which takes into
account the statistical errors leads to the rejection of the
null hypothesis (2) of independence of positive and nega-
tive returns.

These results suggest that markets behave differently
whenever there is a sequence of positive or negative re-
turns. On the other hand, the geometric form for the
distribution of lengths of those sequences (which in the
continuous limit yields the Poisson distribution) indicates
that the market is Markovian. Therefore, no information
can be extracted from the elapsed time since the last
change of sequence and, therefore, the memory of the mar-
ket must be, at most, of one single day. This implies that
the return of the price during a given day can only be cor-
related with the previous day, in particular with the sign
of the previous day.

3 The two-state model

Perhaps one of the simplest model still able to repro-
duce all of the above empirical observations is a two-state
model in which the probability of having positive or neg-
ative returns depends on the sign of the previous day.
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More precisely, let p++ be the probability of having a
positive return given that the return of the previous day
was positive and p−− the probability of having a nega-
tive return given that the return of the previous day was
negative. Note that the model has only two independent
parameters, p++ and p−−. The rest of probabilities can be
obtained from them as p−+ = 1−p++ and p+− = 1−p−−
and they measure the probability of having a negative
(positive) return given that the return of the previous day
was positive (negative).

The distributions ψ+(n) and ψ−(n) are now given by

ψ+(n) = pn−1
++ (1 − p++) (3)

and
ψ−(n) = pn−1

−− (1 − p−−). (4)

Again geometric distributions with average lengths
given by

〈τ+〉 = (1−p++)−1 and 〈τ−〉 = (1−p−−)−1. (5)

The frequency of positive days, p+, is easily evaluated by
observing that in a two-state system with states + and −
the frequency of each state is

p+,− =
〈τ+,−〉

〈τ+〉 + 〈τ−〉 (6)

independent of the waiting time distributions [17]. Substi-
tuting equation (5) into equation (6) yields

p+ =
1 − p−−

2 − p−− − p++
, (7)

and a similar expression for p− exchanging p++ by p−−.
We will now compare the predictions of the two-state

model with empirical data. Direct measurements on the
DJIA data set yield the following values for the condi-
tional probabilities: p++ = 0.547 ± 0.004 and p−− =
0.495 ± 0.004. Using these two measures as inputs for
the model, the predicted values for p+, 〈τ+〉, and 〈τ−〉
are p+ = 0.527 ± 0.004, 〈τ+〉 = 2.21 ± 0.02 and 〈τ−〉 =
1.98 ± 0.02, in perfect agreement with the empirical re-
sults reported above (see Tab. 1).

It might be argued that the discrepancy between the
empirical measures of 〈τ+〉 and 〈τ−〉 and the theoreti-
cal predictions of the uncorrelated model are marginal
and, consequently, the two-state model only introduces
a slight correction to the actual dynamics. Nevertheless,
what seems to be significant is the fact the market ap-
parently reacts differently depending on the sign of the
previous day and this introduces, in a natural way, the
idea of a dual dynamics. Having this in mind, we define
p(R|Rprev > 0)dR to be the conditional probability that
the daily return lies within the interval (R,R+ dR) given
that the previous day had a positive return. Analogously
p(R|Rprev < 0)dR is that conditional probability if the
previous day had a negative return. Up to this point, we
have only studied the behavior of the sign of the signal

specified by the quantities p++ and p−−, which are re-
lated to the previous functions by

p++ =
∫ ∞

0

p(R|Rprev > 0)dR (8)

p−− =
∫ 0

−∞
p(R|Rprev < 0)dR. (9)

However, if the market is really driven by a dual dynam-
ics there should be a substantial difference between the
moments of p(R|Rprev > 0) and p(R|Rprev < 0). Let us
denote by 〈R+〉 and 〈R−〉 the first moment of these dis-
tributions, that is, 〈R+〉 [〈R−〉] is the conditional average
of the daily return given that yesterday’s return was pos-
itive [negative]. Similarly, let σ+, and σ− be their stan-
dard deviations. For the DJIA index, the empirical val-
ues for these quantities are: 〈R+〉 = (8.2 ± 0.8) × 10−4,
〈R−〉 = (−5.3± 1.0)× 10−4, σ+ = (9.9± 0.2)× 10−3, and
σ− = (11.8±0.3)×10−3. These values should be compared
with the unconditional average of the daily return, 〈R〉 =
(1.7± 0.6)× 10−4, and volatility σ = (10.9± 0.2)× 10−3.
Note that 〈R〉 and its variance can be evaluated through
the two-state model by

〈R〉 = p+〈R+〉 + p−〈R−〉, (10)

and

σ =
√
p+σ2

+ + p−σ2− + p+p−(〈R+〉 − 〈R−〉)2, (11)

with the results 〈R〉 = (1.8 ± 0.6) × 10−4 and σ =
(10.9 ± 0.2) × 10−3. Both in very good agreement with
their empirical values. Table 1 summarizes the relevant
statistics for the DJIA index and the equivalent values
predicted by the uncorrelated model and the two-state
model.

There is something quite significant in these results,
for they show that the average return of the market is the
result of the composition of two independent signals: one
of them positive, 〈R+〉, and another one negative, 〈R−〉.
At the light of these results, and given the multiplicative
character of the market, it does not seem to be possible
to neglect the effects of this dual dynamics, at least in
the long run. Indeed, the quantitative difference between
the average daily return of both signals is rather signifi-
cant in the sense that a small change in the signal would
substantially alter the long term trend of the market (see
Fig. 3).

As we have seen, the daily return of a given day is a
random quantity correlated with the return of the previ-
ous day. One question that arises now is: how does this
correlation depend on the magnitude of the previous re-
turn? In order to check this point we evaluate the av-
erage return given that the previous day had a return
greater than a certain value rc, 〈R+(rc)〉, or smaller than
rc, 〈R−(rc)〉. Note that rc = 0 correspond to the previous
analysis. These two functions are plotted in Figure 2. As
is clearly seen, there is a significant difference whenever
the previous day has a positive or negative increment in
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Fig. 2. Average daily return given that the previous day had
a return greater than rc (right) and given that the previous
day has a return smaller than rc (left).

price. For rc ∈ [−1.5%, 1.5%] the positive branch is posi-
tive –and slightly increasing – whereas the negative branch
remains negative and almost insensitive to the magnitude
of the previous price drop. Beyond this interval, the neg-
ative branch increases and, eventually, both branches be-
come equivalent —within the statistical error— meaning
that correlations are lost for this range of returns. In other
words, there is no net effect if the previous day has a re-
turn greater than 1.5% or smaller than −1.5%. This re-
version of the negative branch could be understood as a
recovery effect after an extreme price drop, although the
poor statistics for this range of returns does not allow us
to make a more assertive and documented statement.

It is worth noticing that the effect described in Fig-
ure 2 is similar to that observed by LeBaron [12] who
showed that serial correlations (measured through the cor-
relation coefficient between two consecutive returns) are
significantly bigger during low volatility periods than dur-
ing highly volatile periods (see also [13]). Note, however,
that the present approach essentially differs to that of [12]
in the fact that we measure serial correlations by means
of two independent signals (positive and negative returns)
instead of the entire correlation coefficient which embodies
the two signals. Moreover in [12] the correlation coefficient
is conditioned to the volatility of the previous period eval-
uated on an arbitrary time window, which can introduce
additional uncertainties.

As we have mentioned, the conditional dynamics is ba-
sically observed when previous returns lay in the interval
[−1.5%, 1.5%]. For higher values of previous returns this
twofold dynamics turns into the standard dynamics with
no bias between positive and negative previous returns.
For the DJIA index these highly volatile days account for
less than 10% out of the total trading days. However, this
10% of days does not lessen the relevance of the corre-
lations present in the remaining 90% of trading days. To
enhance the relevance of this effect we will analyze the evo-
lution of the index in terms of the dual dynamics. Thus
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Fig. 3. Evolution of the logarithm of the DJIA index com-
pared to the corresponding positive and negative dynamics
along with a simulation of the expected dynamics if returns
were uncorrelated. Observe that in both cases the sum of the
two signals is equal to the logarithm of the index price.

the evolution of the price index at time n, Sn, can be
expressed as

ln
[
Sn

S0

]
=

n∑
i=1

Ri =
∑

Rprev>0

Ri +
∑

Rprev<0

Ri, (12)

where the last two terms correspond to the sum of re-
turns for which the previous return was positive or neg-
ative respectively. In Figure 3 we show the evolution of
the logarithm of the DJIA index as well as the evolu-
tion of both branches of the conditional dynamics. As is
clearly seen, the positive branch increases faster than the
price itself whereas the negative one decreases. Figure 3
also shows the evolution of two signals constructed from
a random partition of returns into two groups under the
constrain that one of the groups has np+ returns and the
other n(1− p+). Note that these signals would be the ex-
pected ones if returns were uncorrelated, in other words,
they represent a simulation of the unconditional dynam-
ics. Observe the great divergence between the conditional
dynamics and the unconditional one. We conjecture that
this difference is mainly due to those returns with low pre-
vious returns since correlations are destroyed otherwise.
Figure 3 also seems to discover another interesting prop-
erty, namely, the independence of both branches of the
dual dynamics. This is best seen in the evolution of the
last 30 years (see Fig. 3 from day 22500 on) during this
period the negative branch remains flat which seems to in-
dicate the absence of any drift during days with previous
negative returns. This, in turn, suggests that the net drift
of the index would be predominately due to the positive
branch.
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4 Analysis for individual stocks and treasury
bonds

We finally address the question of the universality of the
dual dynamics. The preceding analysis has been carried
out for one specific index, the DJIA, during a period of
100 years. Previous works on the effect have also been per-
formed on daily data of DJIA and Standard and Poors in-
dices [12]. Therefore, one important point is whether this
correlation is also present for individual stocks and any
other class of financial assets. In order to shed some light
on this question, we have analyzed the performance of 65
companies trading in the LIFFE market1 during a twelve
year period from 1990 to 2002. In this case the increase
of statistical error due to the short period considered is
balanced by analyzing a large number of different com-
panies. For each company we have measured 〈R±〉, that
is, the average conditional returns given that yesterday
return was positive, 〈R+〉, or negative, 〈R−〉. The results
are shown in Figure 4 as a scattered plot,where axes repre-
sent the conditional average daily returns rescaled by the
unconditional volatility of the corresponding company. If
no correlation were present between a given return and
the sign of the previous one then 〈R+〉 and 〈R−〉 would
take the same value (except for statistical fluctuations)
and, therefore, all companies would be scattered around
the main diagonal, in the first quadrant. In contrast we
see in Figure 4 a clear tendency to stay in the second
quadrant, including the statistical error, with 〈R+〉 be-
ing a positive quantity and 〈R−〉 being a negative one (or
close to zero). This means that, on average, the returns
after a positive day outperform those that follow a nega-
tive day in agreement with the model presented. The same
effect is observed in other classes of financial assets, such
as treasury bonds2 —blue symbols in Figure 4— or com-
modities (not reported here). All these results suggest the
universality of the dual dynamics driving the evolution of
financial markets.

5 Conclusion

We have revisited the effect of correlations of daily re-
turns and reported empirical evidences of the existence of
a conditional dynamics driving the behavior of financial
markets which manifests itself in the fact that daily prices
tend to go up or down depending on whether yesterday’s
price went up or down. Moreover this dynamics seems to
be ubiquitous to a wide sample of different markets which
may indicate the universal character of this effect.

Let us now summarize the main correlations observed
in financial time series which show the incompleteness of
the efficient market hypothesis. For one hand, we have the

1 London International Financial Futures and Options Ex-
change.

2 US Long Bond, US 10YR Note, US 5YR Note, US 2YR
Note, US 3MO Treasury Bill, Euro-Bund Future, Euro-Bobl
Future, Euro-Schatz Future, EUX 3 MO Euribor, Swiss Fed
Bund Future, Euro Sfr 3 MO LIFFE, Long Gilt Future.
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Fig. 4. Scattered plot of the average daily returns given that
the previous day had a positive or negative increment for the
companies trading in the LIFFE market and several American
and European treasury bonds during the period 1990–2002. For
the sake of comparison, these average returns are rescaled by
the volatility of the corresponding company. The bars represent
the average statistical error of all companies and bonds.

return-return correlations which are observed in two dif-
ferent time scales: (i) the daily scale studied above and
(ii) the high frequency scale with a correlation time of
the order of few minutes [8,9,15,16]. A second impor-
tant example is provided by the volatility-volatility corre-
lation. In this case there seems to be a clear positive cor-
relation between the dispersion of the return today and
in the future, with a characteristic time of the order of
years [5,8,9]. Finally, a third type of correlation is pro-
vided by the leverage effect [18,19], which states that a
large drop of the price is followed by an increase of the
volatility. This correlation is found to be of intermediate
range, with a typical time scale of few weeks.

We close this paper by stressing the fact that financial
time series are often non-stationary, at least at long times,
and, consequently, it is possible to find short periods in
which the dual dynamics is not clearly visible. Therefore,
the empirical findings reported here must be considered
from an overall point of view at the same level as the
observation that the market is historically growing despite
the existence of many bear periods. This point will be
addressed in future communications.
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